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Abstract

In this paper we prove thatN(f) = |L(f)| for any continuous mapf on a given orientable flat
generalized Hantzsche–Wendt manifold. This is the analogue of a theorem of Anosov for continuous
maps on nilmanifolds. We also show that the theorem always fails in the non-orientable case.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

LetM be a smooth closed manifold and letf : M → M be a continuous self-map ofM.
In fixed point theory, two numbers are associated withf to provide information on its fixed
points: the Lefschetz numberL(f) and the Nielsen numberN(f). Inspired by the fact that
N(f) gives more information thanL(f), but unfortunatelyN(f) is not readily computable
from its definition (whileL(f) is much easier to calculate), in literature, a considerable
amount of work has been done on investigating the relation between both numbers. Anosov
[1] proved thatN(f) = |L(f)| for all continuous mapsf : M → M if M is a nilmanifold,
but he also observed that there exists a continuous mapf : K → K of the Klein bottleK
such thatN(f) �= |L(f)|.
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There are two possible ways of trying to generalize this theorem of Anosov. Firstly, one
can search classes of maps for which the relation holds for a specific type of manifold.
For instance, Kwasik and Lee proved[10] that the Anosov theorem holds for homotopic
periodic maps of infra-nilmanifolds and Malfait[12] did the same for virtually unipotent
maps of infra-nilmanifolds. Secondly, one can look for classes of manifolds, other than
nilmanifolds, for which the relation holds for all continuous maps of the given manifold, as
was established by Keppelmann and McCord for exponential solvmanifolds[8].

In this article we follow the second approach and we show thatN(f) = |L(f)| holds
for all continuous mapsf of an orientable flat generalized Hantzsche–Wendt manifold. In
this way we obtain the first known example of a large class of flat manifolds, outside the
class of the tori, for which the theorem of Anosov always holds. To see that this is really
a large class, we refer to the work of Miatello and Rossetti[13], where it is shown that
the number of orientable flat generalized Hantzsche–Wendt manifolds grows exponentially
with the dimension (while there is only one torus in each dimension!).

We also show that it is essential thatM is orientable, since for any non-orientable flat
generalized Hantzsche–Wendt manifoldM we construct a continuous mapf : M → M

such thatN(f) �= |L(f)|.

2. Preliminaries

An affine endomorphism ofRn is an element(a,A) of Rn � Mn(R) with a ∈ Rn the
translational part andA ∈ Mn(R) (= the semigroup ofn× n matrices) the linear part. The
product of two affine endomorphisms is given by(a,A)(b, B) = (a + Ab,AB) and(a,A)

maps an elementx ∈ Rn to a + Ax. If the linear partA belongs to Gl(n,R), then(a,A) is
an affine transformation ofRn. We write Aff(Rn) = Rn � Gl(n,R) for the group of affine
transformations ofRn.

2.1. Flat manifolds and continuous maps

Let M be a flat (Riemannian) manifold of dimensionn and assumeE = π1(M) denotes
its fundamental group. ThenE is a torsion-free group fitting into an extension 0→ Zn →
E → F → 1, whereZn is maximal abelian inE andF is a finite group. Equivalently,E
is a uniform, discrete subgroup ofRn � O(n) ⊆ Aff (Rn), acting freely onRn. The group
Λ = E∩Rn of pure translations inE is a uniform lattice ofRn and soE∩Rn ∼= Zn (the free
abelian group which is the kernel of the short exact sequence above). We refer toF as the
holonomy group ofM = E\Rn andE is said to be a Bieberbach group. The holonomyF

acts onZn by conjugation inE, defining a faithful representationT : F → Gl(n,Z), which
is referred to as the holonomy representation (and which is defined up to conjugation inside
Gl(n,Z), depending on the choice of the free generating set ofE∩Rn). The faithfulness of
the holonomy representationT : F → Gl(n,Z) is equivalent toZn being maximal abelian
in E. A standard reference is[4].

Essential for our purposes is the following result due to Lee[11] (formulated here only
for Bieberbach groups, not for the more general case of almost-crystallographic groups).
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Theorem 2.1. LetE,E′ ⊂ Aff Rn be two Bieberbach groups. Then for any homomorphism
θ : E → E′, there exists ag = (d,D) ∈ Rn � Mn(R) such thatθ(α) · g = g · α for all
α ∈ E.

Important for us, is the following corollary of this theorem (we refer to[6] for a detailed
proof).

Corollary 2.2. Let M = E\Rn be a flat Riemannian manifold andf : M → M is a
continuous map ofM. Then f is homotopic to a maph : M → M induced from an affine
endomorphismg : Rn → Rn.

We say thatg is the homotopy lift off . Note that one can find the homotopy lift of a given
f , by usingTheorem 2.1for the homomorphismf∗ : π1(M) → π1(M) induced byf . In
this way, we obtain a method to characterize all continuous maps, up to homotopy, of a flat
Riemannian manifoldM by constructing all possible homomorphismsθ of π1(M) and so
all suitable affine endomorphisms ofRn, namely the affine endomorphismsg : Rn → Rn

referred to inCorollary 2.2.

2.2. The Nielsen numbers

Let M be a compact manifold and assumef : M → M is a continuous map. The
Lefschetz numberL(f) is defined by

L(f) =
∑
i

(−1)iTrace(f∗ : Hi(M,Q) → Hi(M,Q)).

The set Fix(f) of fixed points off is partitioned into equivalence classes, referred to as
fixed point classes, by the relation:x, y ∈ Fix(f) aref -equivalent if and only if there is a
pathw from x to y such thatw andfw are homotopic. To each class one assigns an integer
index. A fixed point class is said to be essential if its index is non-zero. The Nielsen number
of f is the number of essential fixed point classes off . The relation betweenL(f) and
N(f) is given by the property thatL(f) is exactly the sum of the indices of all fixed point
classes. For more details we refer to[3,7,9].

In this article we examine the relationN(f) = |L(f)| for continuous mapsf : M → M.
SinceL(f) andN(f) are homotopy invariants, we know that calculatingL(f) andN(f) for
continuous mapsf on a flat manifoldM, is equivalent to computing the Nielsen numbers for
the continuous maps ofM which are induced by affine endomorphisms (Corollary 2.2). We
will do this using the following theorem of Lee[11] (in the special case of flat Riemannian
manifolds).

Theorem 2.3. Letf : M → M be a continuous map on a flat manifold M and letT : F →
Gl(n,Z) be the associated holonomy representation. Letg = (d,D) ∈ Rn � Mn(R) be a
homotopy lift of f. ThenN(f) = L(f), resp.N(f) = −L(f), if and only ifdet(In−T(x)D) ≥
0, resp. det(In − T(x)D) ≤ 0, for all x ∈ F .
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2.3. Generalized Hantzsche–Wendt manifolds

We start with the following definitions.

Definition 2.4. An n-dimensional flat manifold is called a Generalized Hantzsche–Wendt
(GHW) manifold if its holonomy group is isomorphic toZn−1

2 . In this case the Bieberbach
groupE = π1(M) is called a GHW group.

Definition 2.5. Ann-dimensional Bieberbach group E is said to be diagonal if its latticeΛof
translations has an orthogonal basis for which the holonomy representation T diagonalizes.

Rossetti and Szczepański [15] proved the following theorem.

Theorem 2.6. The fundamental groupπ1(M) of a generalized Hantzsche–Wendt manifold
is diagonal.

Remark 2.7. This paper depends strongly on the above theorem. The reader who is uncom-
fortable with the fact that we have to refer to a not yet published paper for this result, can
include the fact that the holonomy representation is diagonalizable as part of the definition
of a GHW manifold or (s)he can add this as an extra condition to all the results which follow.

Before analyzing the consequences ofTheorem 2.6, let us recall the following remark.

Remark 2.8. SupposeM is ann-dimensional flat manifold with associated holonomy rep-
resentationT : F → Gl(n,Z). ThenM is an orientable manifold if and only if det(T(x)) =
1 for allx ∈ F . In case there exists an elementx ∈ F such that det(T(x)) = −1,M is called
a non-orientable manifold. For more background, see[2, p. 211; 5, p. 135].

SupposeM is ann-dimensional flat GHW manifold andT : Zn−1
2 → Gl(n,Z) is the

associated holonomy representation. Because ofTheorem 2.6we may assume thatT(x) is
diagonal for eachx ∈ Zn−1

2 and hence we know that the diagonal elements must be 1 or
−1.

If moreover,M is an orientable manifold, then for eachx ∈ Zn−1
2 , the diagonal entries

of T(x) consist of an even number of−1’s while the others are 1. In fact it is obvious that
in Gl(n,Z) there are exactly 2n−1 diagonal matrices whose diagonal entries consist of an
even number of−1’s while the other entries are 1. We obtain the following corollary.

Corollary 2.9. Let M be an n-dimensional orientable flat GHW manifold andT : Zn−1
2 →

Gl(n,Z) its associated holonomy representation. Then

1. The image ofT : Zn−1
2 → Gl(n,Z) is completely determined;

2. n is an odd integer;
3. the first Betti number of M is 0.
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Proof. Note that, because ofTheorem 2.6,T is a diagonal representation. Since a holonomy
representation must be faithful and the holonomy group is of order 2n−1, the first result
follows immediately.

Supposen is an even integer, then there exist ax ∈ Zn−1
2 such thatT(x) = −Id which is

not possible sinceπ1(M) is torsion-free.
One can easily verify (e.g. using[5, p. 143]) that the first Betti number of an orientable

flat GHW manifold must be 0. �

In an analogous way, one can consider the class of non-orientable flat GHW manifolds
M. For these manifolds, it is easy to prove that the first Betti number ofM must be 0 or 1.
In the latter case again the image of the holonomy representation is completely determined.
In the former case there are more possibilities. In[15] the authors show that there aren/2
possibilities forn even and(n + 1)/2 possibilities forn odd. For more details we refer to
[13,15].

To finish the preliminaries, we already note the following for flat GHW manifolds.

Theorem 2.10. Let M be a flat GHW manifold and letf : M → M be a self-homotopy
equivalence of M, thenN(f) = L(f).

Proof. Rossetti and Szczepański[15]proved that the outer automorphism group Out(π1(M))

of the fundamental group of a flat GHW manifold is finite. Therefore it follows from[12]
that each self-homotopy equivalence is homotopically periodic. And because of[10], we
obtain thatN(f) = L(f). �

3. Orientable flat GHW manifolds

The goal of this section is to prove the Anosov theorem for orientable flat GHW manifolds
M, i.e. to show that the relationN(f) = |L(f)| holds for any continuous mapf : M → M

(Theorem 3.7).
LetM be an orientablen-dimensional flat GHW manifold with fundamental groupE =

π1(M) and associated holonomy representationT : F → Gl(n,Z). T(F) is exactly the set
of the 2n−1 diagonal matrices with 1 or−1 on the diagonal and such that the number of
−1’s is even (and the number of 1’s is odd, as the dimension ofM must be odd,Corollary
2.9).

The groupT(F) is hence generated by the set of diagonal matricesAi (1 ≤ i ≤ n − 1),
where all the diagonal entries are−1, except the entry on theith row and column, which is
1. As a consequence, we can assume that the groupE is generated by

(z1, In), . . . , (zn, In), (a1, A1), . . . , (an−1, An−1), (1)

wherezi ∈ Zn (1 ≤ i ≤ n) andai ∈ Rn are appropriate translational parts. Let us, for the
rest of this paper, denote thekth component of an elementb ∈ Rn by bk.

Miatello and Rossetti showed in[14, Lemma 1.4]that we can assume that the elements
aki of ai are 0 or 1/2. Although this result does not allow us to specify the translational
partsai completely, we do already know thataii must be 1/2 for eachi. Indeed, ifaii = 0, a
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simple computation shows that

(ai, Ai) · (ai, Ai) = (ai + Aiai, A
2
i ) =







0
...

0
...

0




, In




,

which would imply thatE has torsion.
We will refer to a generating set(1) of E, with theaki = 0 or 1/2 as a suitable generating

set.

Remark 3.1. Let An = A1 · A2 · · ·An−1. ThenAn is also a diagonal matrix with all
diagonal entries equal to−1, except the last one which is 1 (sincen is odd). Again because
of [14, Lemma 1.4]we can assume that there exists aan ∈ Rn with components 0 or 1/2
such that(an, An) ∈ E.

As already mentioned above, in order to prove the Anosov theorem for flat orientable
GHW manifolds, it is sufficient to deal with the continuous maps ofM which are induced
by a suitable affine endomorphism ofRn. Therefore we need a full description of all affine
endomorphismsg : Rn → Rn which are obtained inCorollary 2.2.

Lemma 3.2. Let M be an orientable n-dimensional flat GHW manifold(n ≥ 3) and let
(z1, I1), . . . , (zn, In), (a1, A1), . . . , (an−1, An−1) be a suitable generating set ofπ1(M) =
E. Assumeθ is a homomorphism of E and(d,D) ∈ Rn � Mn(R

n) is a suitable affine
endomorphism(i.e. ∀α ∈ E : θ(α) · (d,D) = (d,D) · α). Denoting the(i, j)th entry of D
bydij we then have the following:

1. If there exists aj ∈ {1,2, . . . , n} such thatθ(aj, Aj) = (z, In), with z ∈ Zn (the
image of some(aj, Aj) is a pure translation), then for all i (1 ≤ i ≤ n), dik = 0 if
k �= j (1 ≤ k ≤ n), whiledij is an even integer.

2. If there exists aj ∈ {1,2, . . . , n} such thatθ(aj, Aj) = (z, In)(b, B), with z ∈ Zn,
b ∈ Rn a translation consisting of 0’s and1/2’s andB �= In a finite product ofAi’s(the
image of some(aj, Aj) is not a pure translation), then there exists ai (1 ≤ i ≤ n) such
thatdij is an odd integer anddik = 0 for all k �= j (1 ≤ k ≤ n).

Proof.

1. Sinceθ(aj, Aj) · (d,D) = (z, In) · (d,D) = (z + d,D) and(d,D) · (aj, Aj) = (d +
Daj,DAj), it follows thatD = DAj andz + d = d + Daj. Now,Aj only has+1 in the
jth column while the other diagonal entries are−1, this forces all the columns ofD to
be zero, except thejth column.

For the translational parts we must have thatz + d = d + Daj. Sinceajj = 1/2

and only thejth column ofD is non-zero, it follows that(z1 + d1 · · · zn + dn)t =
(d1 + (1/2)d1j · · · dn + (1/2)dnj)

t . Sodij must be an even integer for alli (1 ≤ i ≤ n).



180 K. Dekimpe et al. / Journal of Geometry and Physics 52 (2004) 174–185

2. B is a finite product ofAi’s, soB is also a diagonal matrix with 1’s and−1’s as diagonal
entries. As above we denote the(i, j)th entry ofB by bij . Note that(b, B) · (b, B) =
(b+Bb, In), from which it follows thatb+Bbcannot be equal to zero. This implies that
there exists ai (1 ≤ i ≤ n) such thatbii = 1 andbi = 1/2.

Sinceθ(aj, Aj)·(d,D) = (z+b, B)·(d,D) = (z+b+Bd,BD) and(d,D)·(aj, Aj) =
(d + Daj,DAj), we have thatBD = DAj andz + b + Bd = d + Daj.

Sincebii = 1, theith row of BD equals theith row ofD. Similarly thejth column of
DAj equals thejth column ofD while the other columns ofDAj are equal to minus the
corresponding column ofD. It follows thatdik = 0 for all k �= j (1 ≤ k ≤ n).

To show thatdij is an odd integer, we look at the translational parts for which we know
thatz+b+Bd = d+Daj. Again, usingbii = 1, theith component of the above equality
reduces to

zi + bi + di = di +
n∑

k=1

dika
k
j = di + dija

j
j = di + 1

2
dij .

Sincebi = 1/2 this shows thatdij must be an odd integer. �

Using the lemma above, we can now prove the following proposition in which we describe
the linear parts of all suitable affine endomorphisms ofRn.

Proposition 3.3. Let M be an orientable n-dimensional flat GHW manifold with fundamen-
tal groupπ1(M) = E (n ≥ 3). Letθ be a homomorphism of E and(d,D) ∈ Rn � Mn(R

n)

be a suitable affine endomorphism. Then

1. D is either the zeron × n matrix0n or
2. D is an element ofGl(n,Q) such that in each row and each column of D there is exactly

one non-zero element, which is an odd integer.

Proof. To prove this proposition we distinguish three cases depending on the number of
(ai, Ai)’s which are mapped onto a pure translation:

• Case 1: Suppose thatθ is a homomorphism ofE such that two or more of the images
of (a1, A1), . . . , (an, An) are pure translations. So there existi andj, i �= j, for which
θ(ai, Ai) andθ(aj, Aj) are pure translations. ThenLemma 3.2implies thatD = 0n.

• Case 2: Suppose thatθ is a homomorphism ofE such that just one of the images of
(a1, A1), . . . , (an, An) is a pure translation. So part one ofLemma 3.2implies that all
the elements ofD are even integers. But there also has to exist aj such thatθ(aj, Aj) is
not a pure translation. So part two ofLemma 3.2implies that there is ai such thatdij is an
odd integer. Since this gives a contradiction, we conclude that no such homomorphism
exists.

• Case 3: Suppose thatθ is a homomorphism ofE such that none of the images of
(a1, A1), . . . , (an, An) is a pure translation. In this situation, we can determineD com-
pletely. Namely, sinceθ(a1, A1) is not a pure translation,Lemma 3.2implies that there
exists ai1 such thatdi11 is odd, while the other elements of thei1th row are zero. Doing
the same for(a2, A2) we obtain ai2 such thatdi22 is odd, while the other elements of
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the i2th row are zero. Clearlyi2 �= i1, otherwise we would have thatdi22 is zero on
the one hand and an odd integer on the other hand. This can be done for all the images
of (a1, A1), . . . , (an−1, An−1) and(an, An), so we have completely determinedD as a
matrix with exactly one non-zero, odd entry in each row and column. �

Remark 3.4. In the above proposition, we did not mention the image of the pure transla-
tions. But since theD always consist of integers, one can easily show that the image of a
pure translation under the homomorphism again must be a pure translation.

Now that we have a clear view on the different possibilities for the linear parts of the
suitable affine endomorphisms(d,D), we can start to useTheorem 2.3. Note that this
theorem only uses the linear partD, so it is not a problem that we did not investigate the
translational partsd appearing in a suitable affine endomorphism.

As a first step, in the following lemma we calculate the determinants which appear in
Theorem 2.3and in a second lemma we determine the signs of these determinants. To a
(n×n)-matrixD with in each row and each column exactly one non-zero element (as in the
second part ofProposition 3.3), one can associate an unique permutationµ of n elements.
Namely, for anyi = 1,2, . . . , n let µ(i) be the unique index such thatdiµ(i) �= 0. Clearly
µ is a permutation ofn elements andµ has a unique cycle decomposition.

Lemma 3.5. Suppose B is any diagonal matrix whose diagonal entriesbii are1’s and−1’s:

1. If D = 0n is the zero(n × n)-matrix, thendet(In − BD) = 1 for all possible B.
2. Let D be a(n×n)-matrix, such that in each row and each column of D there is exactly one

non-zero element and letµ be the associated permutation. Let the cycle decomposition
of µ be

(l11l
1
2 · · · l1p1

)(l21l
2
2 · · · l2p2

) · · · (lr1lr2 · · · lrpr
).

Then we have that

det(In − BD)= det(B) ×
r∏

i=1

(bli1l
i
1
bli2l

i
2
· · · blipi lipi − dli1µ(l

i
1)
dli2µ(l

i
2)

· · · dlipiµ(lipi ))

= det(B) ×
r∏

i=1

(bli1l
i
1
bli2l

i
2
· · · blipi lipi − dli1l

i
2
dli2l

i
3
· · · dlipi li1).

Proof.

1. Trivial.
2. SinceB2 = In, we have that det(In − BD) = det(B) · det(B − D). Now we show that

det(B − D) =
r∏

i=1

(bli1l
i
1
bli2l

i
2
· · · blipi lipi − dli1µ(l

i
1)
dli2µ(l

i
2)

· · · dlipiµ(lipi )).

We do this by induction onn, the casen = 1 being trivial.
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Suppose the formula holds for(n−1)×(n−1)-matrices (n ≥ 2), then we distinguish
two cases:

(a) dnn �= 0 or equivalentlyµ(n) = n. Then det(B−D) = (bnn−dnµ(n))det(B′ −D′),
whereB′ (resp.D′) is obtained from the matrixB (resp.D) by deleting the last row
and column. By applying the induction hypothesis toB′ − D′ we obtain the result.

(b) dnn = 0. Then there exists a uniquek such thatdnk �= 0 (orµ(n) = k) and a unique
l with dln �= 0 (orµ(l) = n). So in the cycle decomposition ofµ, there is a cycle of
the form(l1 · · · lnk · · · lp).

In the last column of the matrixB − D there are two non-zero elements, namelybnn

and−dln.
Sincebnn = ±1 we can create a zero in the last column of thelth row by adding to

the lth rowbnn · dln times the last row. In the computation below, this operation is used
in the step indicated with(∗).

In this calculation, we again useB′ andD′ to denote the matrices obtained by deleting
the last row and column ofB andD, respectively. Note that thelth row ofD′ and thekth
column ofD′ only consists of zeros and that in each other row and each other column of
D′ there is exactly one non-zero element.

Also, we needD′′ obtained fromD′ by changing thekth component of thelth row of
D′ to bnndlndnk. SinceD′ is from the above form, we then have that in each row and each
column ofD′′ there is exactly one non-zero element. So

det(B − D) = det




0
...

0
B′ − D′ −dln

0
...

0
0 · · · 0 −dnk 0 · · · 0 bnn




(∗)=det




0

B′ − D′′ ...

0
0 · · · 0 −dnk 0 · · · 0 bnn




= bnn det(B′ − D′′). (2)

Now we can associate a permutationµ′′ of n− 1 elements toD′′. The cycle decomposition
of µ′′ is obtained from the cycle decomposition ofµ by replacing in this decomposition
the cycle(l1 · · · lnk · · · lp) which containsn, with the cycle(l1 · · · lk · · · lp). The induction
hypothesis now applies to the matrixB′ −D′′ and it follows that all factors in the expansion
of det(B′ − D′′) except the one containing the terms of thelth row are of the desired form.
The exceptional factor containing the elements of thelth row and corresponding to the cycle
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(l1 · · · lk · · · lp) is of the following form:

bl1l1 · · · bll · · · blplp − dl1µ(l1) · · · (bnndlndnk) · · · dlpµ(lp).
We can multiply the factor above withbnn to get

bnnbl1l1 · · · bll · · · blplp − bnndl1µ(l1) · · · (bnndlndnk) · · · dlpµ(lp),
which equals (n = µ(l) andµ(n) = k)

bl1l1 · · · bllbnn · · · blplp − dl1µ(l1) · · · dlµ(l)dnµ(n) · · · dlpµ(lp).
This part of the expansion of(2) together with the other factors show that det(B −D) is of
the desired form. �

Note that the number of factors of the determinants in the previous lemma does not depend
onB, but only onD (in fact, only on the form ofD determined byµ). So for a givenD, with
D as in the second case ofLemma 3.2, and any diagonal matrixB consisting of 1’s and−1’s,
we obtain that det(In − BD) = det(B)(±1− x1) · · · (±1− xk). Herex1, . . . , xk ∈ 1+ 2Z

and the±1’s depend on the choice ofB. In this perspective the following lemma is crucial.

Lemma 3.6. Fix an integerk ≥ 1 andx1, . . . , xk ∈ 1 + 2Z. Then

either(ε1 − x1) · · · (εk − xk) ≥ 0 for all possibleε1, . . . , εk ∈ {−1,1},
or (ε1 − x1) · · · (εk − xk) ≤ 0 for all possibleε1, . . . , εk ∈ {−1,1}.

Proof. Suppose there existsε1, . . . , εk andε′
1, . . . , ε

′
k such that(ε1−x1) · · · (εk −xk) > 0

and(ε′
1 − x1) · · · (ε′

k − xk) < 0. This is only possible if there exist aj for which 1− xj > 0
and−1 − xj < 0 or conversely 1− xj < 0 and−1 − xj > 0. But in the former case
we quickly see thatxj = 0 which is not possible and in the latter case we obtain the
contradiction thatxj > 1 andxj < −1. �

We are now ready to prove the Anosov theorem for flat orientable GHW manifolds.

Theorem 3.7. Let n ≥ 3 be an odd integer and M is an orientable n-dimensional flat
generalized Hantzsche–Wendt manifold. Then for each continuous mapf : M → M we
have thatN(f) = |L(f)|.

Proof. Supposef : M → M is a continuous map onM. Due toCorollary 2.2we know that
f is homotopic to a mapg induced by an suitable affine endomorphism(d,D) of Rn and
due toProposition 3.3we know howD looks like. Since the Nielsen numbers are homotopy
invariants it suffices to prove the theorem for the mapg. We useTheorem 2.3to verify that
N(g) = |L(g)|. Therefore we have to calculate det(In − T(x)D) for eachx ∈ F . Note that
for eachx ∈ F, T(x) is a diagonal matrix whose diagonal entries consist of an even numbers
of −1’s while the others are 1 and so det(T(x)) = 1. Therefore we can applyLemmas 3.5
and 3.6to the determinants det(In − T(x)D) which finishes the proof of the theorem.�
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4. Non-orientable flat GHW manifolds

We show for any non-orientable flat GHW manifoldM thatTheorem 3.7does not hold.
Again due toTheorem 2.6we have that the manifoldM is a diagonal manifold. So we can
assume thatE = π1(M) is generated by

(z1, In), . . . , (zn, In), (a1, A1), . . . , (an−1, An−1)

with zi ∈ Zn, Ai a diagonal matrix whose diagonal entries consist of 1’s and−1’s and the
ai are appropriate translational parts with 0 and 1/2’s in their components[14, Lemma 1.4].
We can no longer be specific about theAi’s, since in the non-orientable case there are more
possibilities. However asM is a non-orientable manifold, there exists a matrixAj such that
det(Aj) = −1. We can prove the following theorem concerning non-orientable flat GHW
manifolds.

Theorem 4.1. If M is a non-orientable flat GHW manifold. Then there always exists a
continuous mapf : M → M for whichN(f) �= |L(f)|.

Proof. Consider for example the affine transformation with translational part zero and

linear partD =




3 0 · · · 0
0 3 · · · 0
...

. . .
...

0 0 · · · 3


 .

To show that(0,D) induces a continuous mapf : M → M, it suffices to verify that
conjugation with(0,D) mapsE to E. Assume(b, B) ∈ E (we know thatb ∈ (1/2)Zn). If
we conjugate with(0,D) we obtain the following:

(0,D)(b, B)(0,D)−1 = (Db,DB)(0,D−1) = (Db,DBD−1).

BecauseD andB are diagonal matrices,DBD−1 = B and sinceDb = 3b we obtain that
(b, B) is mapped onto(3b, B) = (2b, In)(b, B) ∈ E. Sinceb ∈ (1/2)Zn, we have that
(3b, B) ∈ E or conjugation with(0,D) mapsE to E.

To show thatN(f) �= |L(f)|, we again useTheorem 2.3. It is sufficient to findx, x′ ∈ F

such that det(In−T(x)D) > 0 and det(In−T(x′)D) < 0. We establish this using det(In−D)

and det(In−AjD) (with Aj, such that detAj = −1). One easily verifies that det(In−D) =
(1−3) · · · (1−3) and det(In−AjD) = det(Aj)det(Aj −D) = (−1)(a11−3) · · · (ann−3)
with aii ∈ {−1,1} for 1 ≤ i ≤ n. So if we applyLemma 3.6, we obtain that the two
determinants have a different sign and thereforeN(f) �= |L(f)|. �



K. Dekimpe et al. / Journal of Geometry and Physics 52 (2004) 174–185 185

Acknowledgements

The authors would like to thank Andrzej Szczepański of the University of Gdansk, for
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