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Abstract

In this paper we prove tha¥(f) = |L(f)| for any continuous mag on a given orientable flat
generalized Hantzsche—Wendt manifold. This is the analogue of a theorem of Anosov for continuous
maps on nilmanifolds. We also show that the theorem always fails in the non-orientable case.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Let M be a smooth closed manifold and jet M — M be a continuous self-map 1.
In fixed point theory, two numbers are associated vfitb provide information on its fixed
points: the Lefschetz numbér /) and the Nielsen numbe&¥( /). Inspired by the fact that
N(f) gives more information thah (1), but unfortunately( f) is not readily computable
from its definition (whileL(f) is much easier to calculate), in literature, a considerable
amount of work has been done on investigating the relation between both numbers. Anosov
[1] proved thatN( f) = |L())| for all continuous mapg : M — M if M is a nilmanifold,
but he also observed that there exists a continuous fnafi — K of the Klein bottlek
such thatN(f) # |L()].
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There are two possible ways of trying to generalize this theorem of Anosov. Firstly, one
can search classes of maps for which the relation holds for a specific type of manifold.
For instance, Kwasik and Lee provglD] that the Anosov theorem holds for homotopic
periodic maps of infra-nilmanifolds and Malfdit2] did the same for virtually unipotent
maps of infra-nilmanifolds. Secondly, one can look for classes of manifolds, other than
nilmanifolds, for which the relation holds for all continuous maps of the given manifold, as
was established by Keppelmann and McCord for exponential solvmanij&jlds

In this article we follow the second approach and we show M@y = |L(f)| holds
for all continuous mapg of an orientable flat generalized Hantzsche—Wendt manifold. In
this way we obtain the first known example of a large class of flat manifolds, outside the
class of the tori, for which the theorem of Anosov always holds. To see that this is really
a large class, we refer to the work of Miatello and Rosg&8i, where it is shown that
the number of orientable flat generalized Hantzsche—Wendt manifolds grows exponentially
with the dimension (while there is only one torus in each dimension!).

We also show that it is essential thft is orientable, since for any non-orientable flat
generalized Hantzsche-Wendt maniféfdwe construct a continuous mgp: M — M
such thatN(f) # |L(/)].

2. Preliminaries

An affine endomorphism dR” is an elementa, A) of R" x M,(R) with a € R" the
translational part and € M, (R) (= the semigroup o x n matrices) the linear part. The
product of two affine endomorphisms is giventay A) (b, B) = (a + Ab, AB) and(a, A)
maps an element € R” toa + Ax If the linear partA belongs to Glr, R), then(a, A) is
an affine transformation d@”. We write Aff(R") = R” x Gl(n, R) for the group of affine
transformations oR”.

2.1. Flat manifolds and continuous maps

Let M be a flat (Riemannian) manifold of dimensieand assumé& = 71(M) denotes
its fundamental group. Thefi is a torsion-free group fitting into an extensioro Z" —
E — F — 1, whereZ" is maximal abelian irE and F is a finite group. Equivalently
is a uniform, discrete subgroup Bf' x O(n) C Aff (R"), acting freely orlR". The group
A = ENR" of pure translations i is a uniform lattice oR” and sctENR" = Z" (the free
abelian group which is the kernel of the short exact sequence above). We réfastthe
holonomy group off = E\R" andE is said to be a Bieberbach group. The holonafy
acts orZ" by conjugation inE, defining a faithful representatian: F — Gl(n, Z), which
is referred to as the holonomy representation (and which is defined up to conjugation inside
Gl(n, Z), depending on the choice of the free generating sétfiR”). The faithfulness of
the holonomy representatidn: F — Gl(n, Z) is equivalent t&Z" being maximal abelian
in E. A standard reference j4].

Essential for our purposes is the following result due to [1d¢ (formulated here only
for Bieberbach groups, not for the more general case of almost-crystallographic groups).
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Theorem 2.1. LetE, E’' C Aff R" be two Bieberbach groups. Then for any homomorphism
0 : E — E,there exists & = (d, D) € R" x M,(R) such that(a) - g = g - « for all
aeE.

Important for us, is the following corollary of this theorem (we refef@pfor a detailed
proof).

Corollary 2.2. Let M = E\R”" be a flat Riemannian manifold anfl: M — M is a
continuous map o#. Then f is homotopic to a map: M — M induced from an affine
endomorphisng : R" — R",

We say thap is the homotopy lift off. Note that one can find the homotopy lift of a given
f, by usingTheorem 2.Xor the homomorphisny, : 71(M) — w1(M) induced byf. In
this way, we obtain a method to characterize all continuous maps, up to homotopy, of a flat
Riemannian manifold/ by constructing all possible homomorphisenhef 71(M) and so
all suitable affine endomorphisms &f, namely the affine endomorphisms R" — R”
referred to inCorollary 2.2

2.2. The Nielsen numbers

Let M be a compact manifold and assurfie: M — M is a continuous map. The
Lefschetz numbeL ( f) is defined by

L(f) = Z(—l)iTrace(f* D Hi(M, Q) — H;(M,Q)).

The set Fix /) of fixed points of f is partitioned into equivalence classes, referred to as
fixed point classes, by the relation:y € Fix(f) are f-equivalent if and only if there is a
pathw from x to y such thatw andfw are homotopic. To each class one assigns an integer
index. A fixed point class is said to be essential if its index is non-zero. The Nielsen number
of f is the number of essential fixed point classesfofThe relation betweet.( f) and
N() is given by the property thdt( f) is exactly the sum of the indices of all fixed point
classes. For more details we refef{3¢7,9].

In this article we examine the relatiav( /) = |L( )| for continuous mapg : M — M.
SinceL( f) andN(f) are homotopy invariants, we know that calculating’) andN( f) for
continuous mapg on a flat manifold, is equivalent to computing the Nielsen numbers for
the continuous maps @f which are induced by affine endomorphisr@®(ollary 2.3. We
will do this using the following theorem of Lgé&1] (in the special case of flat Riemannian
manifolds).

Theorem 2.3. Let f : M — M be a continuous map on a flat manifold M and?et F —
Gl(n, Z) be the associated holonomy representation.d et (d, D) € R" x M, (R) be a
homotopy liftof f. ThetV( f) = L(f),resp N(f) = —L( ), ifand onlyifdetl, —T(x) D) >
0,resp detl, — T(x)D) < O,forall x € F.
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2.3. Generalized Hantzsche—Wendt manifolds

We start with the following definitions.

Definition 2.4. An n-dimensional flat manifold is called a Generalized Hantzsche—-Wendt
(GHW) manifold if its holonomy group is isomorphic Kﬂ;‘l. In this case the Bieberbach
groupE = m1(M) is called a GHW group.

Definition 2.5. Ann-dimensional Bieberbach group E is said to be diagonal ifits laitioé
translations has an orthogonal basis for which the holonomy representation T diagonalizes.

Rossetti and Szczepski[15] proved the following theorem.

Theorem 2.6. The fundamental group; (M) of a generalized Hantzsche—Wendt manifold
is diagonal

Remark 2.7. This paper depends strongly on the above theorem. The reader who is uncom-
fortable with the fact that we have to refer to a not yet published paper for this result, can
include the fact that the holonomy representation is diagonalizable as part of the definition
of a GHW manifold or (s)he can add this as an extra condition to all the results which follow.

Before analyzing the consequenced beorem 2.6let us recall the following remark.

Remark 2.8. SupposeV is ann-dimensional flat manifold with associated holonomy rep-
resentatio’ : F — Gl(n, Z). ThenM is an orientable manifold if and only if dgf(x)) =
1forallx € F.Incase there exists an element F such that dé€ff(x)) = —1, M is called

a non-orientable manifold. For more background,[2ee. 211; 5, p. 135]

SupposeM is ann-dimensional flat GHW manifold and : Zg‘l — Gl(n, Z) is the
associated holonomy representation. Becaugéhebrem 2.6ve may assume thdix) is
diagonal for each € Z’{l and hence we know that the diagonal elements must be 1 or
-1

If moreover,M is an orientable manifold, then for eaehe Zg_l, the diagonal entries
of T(x) consist of an even number efl’s while the others are 1. In fact it is obvious that
in Gl(n, Z) there are exactly’2! diagonal matrices whose diagonal entries consist of an
even number of-1's while the other entries are 1. We obtain the following corollary.

Corollary 2.9. Let M be an n-dimensional orientable flat GHW manifold aholzj ~* —
Gl(n, Z) its associated holonomy representation. Then

1. The image of : Zg_l — Gl(n, Z) is completely determined
2. nis an odd integer
3. the first Betti number of M is.0
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Proof. Note that, because @®heorem 2.6T is a diagonal representation. Since a holonomy
representation must be faithful and the holonomy group is of ortiet, 2he first result
follows immediately.

Suppose: is an even integer, then there exist a& Zg_l such thatf(x) = —Id which is
not possible since (M) is torsion-free.

One can easily verify (e.g. usifg, p. 143) that the first Betti number of an orientable
flat GHW manifold must be 0. O

In an analogous way, one can consider the class of non-orientable flat GHW manifolds
M. For these manifolds, it is easy to prove that the first Betti numbaf afust be 0 or 1.
In the latter case again the image of the holonomy representation is completely determined.
In the former case there are more possibilitied1%] the authors show that there arg2
possibilities forn even andn + 1)/2 possibilities fom odd. For more details we refer to
[13,15]

To finish the preliminaries, we already note the following for flat GHW manifolds.

Theorem 2.10. Let M be a flat GHW manifold and let : M — M be a self-homotopy
equivalence of MthenN(f) = L(Jf).

Proof. Rossettiand Szczepski[15] proved thatthe outer automorphism group @utM))
of the fundamental group of a flat GHW manifold is finite. Therefore it follows ff&&]
that each self-homotopy equivalence is homotopically periodic. And becauy$é]pfve
obtain thatN(f) = L(f). O

3. Orientable flat GHW manifolds

The goal of this sectionis to prove the Anosov theorem for orientable flat GHW manifolds
M, i.e. to show that the relatioN( /) = |L( /)| holds for any continuous map: M — M
(Theorem 3.Y.

Let M be an orientable-dimensional flat GHW manifold with fundamental groBp=
m1(M) and associated holonomy representafionF — Gl(n, Z). T(F) is exactly the set
of the 22~ diagonal matrices with 1 or1 on the diagonal and such that the number of
—1'sis even (and the number of 1's is odd, as the dimensiavl afust be oddCorollary
2.9.

The groupT(F) is hence generated by the set of diagonal matriged <i <n — 1),
where all the diagonal entries arel, except the entry on thiéh row and column, which is
1. As a consequence, we can assume that the gtdagenerated by

(Zlv In)s cet (va [}’1)9 (alv Al)» AR (an—lv An—l)v (1)

wherez; € Z" (1 < i < n) anda; € R”" are appropriate translational parts. Let us, for the
rest of this paper, denote tikéh component of an elemehte R” by b.

Miatello and Rossetti showed [ti4, Lemma 1.4that we can assume that the elements
af.‘ of ¢; are 0 or J2. Although this result does not allow us to specify the translational
partsa; completely, we do already know thgtmust be }2 for eachi. Indeed, ifa! = 0, a
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simple computation shows that

0

(ai, A) - (@i, A) = (@i + Ajai, AD = || 0|, L],

which would imply thatE has torsion.
We will refer to a generating sét) of E, with theai.‘ = 0 or 1/2 as a suitable generating
set.

Remark 3.1. Let A, = A1 - Az---A,_1. Then A, is also a diagonal matrix with all
diagonal entries equal tel, except the last one which is 1 (sincé odd). Again because
of [14, Lemma 1.4Jwe can assume that there existg,ac R" with components 0 or /2
such thata,, A,) € E.

As already mentioned above, in order to prove the Anosov theorem for flat orientable
GHW manifolds, it is sufficient to deal with the continuous mapa/ivhich are induced
by a suitable affine endomorphismf. Therefore we need a full description of all affine
endomorphismg : R” — R" which are obtained i€orollary 2.2

Lemma 3.2. Let M be an orientable n-dimensional flat GHW manifold> 3) and let
(z1, 1), ..., (zn, I), (a1, A1), ..., (an—1, A,—1) be a suitable generating setof(M) =
E. Assumé is a homomorphism of E an@, D) € R" x M, (R") is a suitable affine
endomorphisnfi.e.Va € E : 6(a) - (d, D) = (d, D) - «). Denoting the(i, j)th entry of D
by dj we then have the following

1. If there exists aj € {1,2,...,n} such thatd(a;, A;) = (z, I,), with z € Z" (the
image of soméa;, A;) is a pure translatiol then for alli (1 < i < n),dikx = O if
k # j(1 <k < n), whiledj is an even integer

2. If there exists aj € {1,2,...,n} such thatd(a;, A;) = (z, I,)(b, B), with z € Z",
b € R" atranslation consisting of 0's any2’s andB # I,, a finite product ofd;’ s (the
image of soméqa;, A;) is not a pure translatio)) then there exists &(1 < i < n) such
thatdjj is an odd integer andix = Ofor all k # j (1 <k <n).

Proof.

1. Sincef(aj, Aj) - (d, D) = (z,1,) - (d, D) = (z +d, D) and(d, D) - (aj, A;) = (d +
Da;, DA)), it follows that D = DA; andz + d = d + Da;. Now, A; only has+1 in the
Jjth column while the other diagonal entries af#, this forces all the columns db to
be zero, except thgth column.

For the translational parts we must have that d = d + Da;. Sincea} = 1/2
and only thejth column of D is non-zero, it follows thatz! + dt--.z" + d")' =
d*+ (1/2)dyj - - -d" + (1/2)dn))'. Sodj must be an even integer for alll < i < n).
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2.

Bis afinite product ofd;'s, soB is also a diagonal matrix with 1's anéll’s as diagonal
entries. As above we denote thig j)th entry of B by bjj. Note that(b, B) - (b, B) =
(b+Bb, I,,), from which it follows thath + Bb cannot be equal to zero. This implies that
there exists a(1 < i < n) such thabjj = 1 andb’ = 1/2.

Sincef(a;, Aj)-(d, D) = (z+b, B)-(d, D) = (z+b+Bd, BD)and(d, D)-(aj, Aj) =
(d + Daj, DA)), we have thaBD = DA; andz + b + Bd = d + Da;.

Sinceb;; = 1, theith row of BD equals théth row of D. Similarly the jth column of
DA, equals thejth column of D while the other columns dDA; are equal to minus the
corresponding column ab. It follows thatdy = O for allk # j (1 < k < n).

To show thatijj is an odd integer, we look at the translational parts for which we know
thatz +b+Bd = d +Da;. Again, usinghj = 1, theith component of the above equality
reduces to

n
4+ +d =d + Zdikal;- =d —l—dija; =d + édij.
k=1

Sinceb’ = 1/2 this shows thafj must be an odd integer. O

Using the lemma above, we can now prove the following proposition in which we describe

the linear parts of all suitable affine endomorphism&bf

Proposition 3.3. Let M be an orientable n-dimensional flat GHW manifold with fundamen-
tal groupm1(M) = E (n > 3). Letd be a homomorphism of E anid, D) € R" x M, (R")
be a suitable affine endomorphism. Then

1. D is either the zera x n matrix0, or
2. Dis an element o&l(n, Q) such thatin each row and each column of D there is exactly

one non-zero elementhich is an odd integer

Proof. To prove this proposition we distinguish three cases depending on the number of
(a;, A;)'s which are mapped onto a pure translation:

Case 1 Suppose that is a homomorphism of such that two or more of the images
of (a1, A1), ..., (ay, A,) are pure translations. So there exisind j, i # j, for which
0(a;, A;) andb(a;, A;) are pure translations. Théemma 3.2mplies thatD = 0,.

Case 2 Suppose that is a homomorphism of such that just one of the images of
(a1, A1), ..., (ay, A,) is a pure translation. So part onelafmma 3.2mplies that all
the elements ob are even integers. But there also has to exissach thab(a;, A ;) is
not a pure translation. So part twolamma 3.2mplies that there is asuch thatjj is an
odd integer. Since this gives a contradiction, we conclude that no such homomorphism
exists.

Case 3 Suppose thad is a homomorphism of such that none of the images of
(a1, A1), ..., (ay, A,) is a pure translation. In this situation, we can determiineom-
pletely. Namely, sincé(ai, A1) is not a pure translatiolemma 3.2mplies that there
exists a1 such that;, 1 is odd, while the other elements of thé¢h row are zero. Doing
the same foa,, A2) we obtain & such thatd;,» is odd, while the other elements of
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the ioth row are zero. Clearly, # i1, otherwise we would have that,, is zero on

the one hand and an odd integer on the other hand. This can be done for all the images
of (a1, A1), ..., (an-1, Ap—1) and(a,, A,), SO we have completely determin&das a

matrix with exactly one non-zero, odd entry in each row and column. O

Remark 3.4. In the above proposition, we did not mention the image of the pure transla-
tions. But since thé always consist of integers, one can easily show that the image of a
pure translation under the homomorphism again must be a pure translation.

Now that we have a clear view on the different possibilities for the linear parts of the
suitable affine endomorphisntd, D), we can start to us&@heorem 2.3 Note that this
theorem only uses the linear pddt so it is not a problem that we did not investigate the
translational partd appearing in a suitable affine endomorphism.

As a first step, in the following lemma we calculate the determinants which appear in
Theorem 2.3and in a second lemma we determine the signs of these determinants. To a
(n x n)-matrix D with in each row and each column exactly one non-zero element (as in the
second part oProposition 3.3 one can associate an unique permutatiasf n» elements.
Namely, foranyi = 1, 2, ... , n let u(i) be the unique index such thé,;, # 0. Clearly
W is a permutation of elements ang has a unique cycle decomposition.

Lemma3.5. Suppose B is any diagonal matrix whose diagonal enkijesel’s and—1's:

1. If D=0, is the zeran x n)-matrix, thendet(/, — BD) = 1 for all possible B

2. Let D be a(n x n)-matrix, such that in each row and each column of D there is exactly one
non-zero element and lgtbe the associated permutation. Let the cycle decomposition
of u be

(1%1% .. .1,171)(1515 .. 'liz) eyl ).

Then we have that

,
det(l, — BD) =det(B) x l_[(blillablgliz e bli’il;’i - dlilll(lil)dlé#(lé) .. -dlfﬁi“(li’i))
i=1
Pi'pi

,
= det(B) x H(bzgngzgz; b = dig e dy ).
i=1

Proof.

1. Trivial.
2. SinceB? = I,,, we have that déf,, — BD) = det(B) - det(B — D). Now we show that

)
det8 — D) = [ [Grpbys, by, = dppatydiyuaty -y ua,)-
i=1

We do this by induction on, the case = 1 being trivial.
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Suppose the formula holds for — 1) x (n — 1)-matrices > 2), then we distinguish
two cases:

(@) dnn # 0 or equivalentlyu(n) = n. Then detB — D) = (bnn— dypu(n)) det(B' — D),
whereB’ (resp.D’) is obtained from the matri® (resp.D) by deleting the last row
and column. By applying the induction hypothesisBfo- D’ we obtain the result.

(b) dnn = 0. Then there exists a unigéesuch thatink # 0 (or w(n) = k) and a unique
[ with dj, # 0 (or (/) = n). Soin the cycle decomposition gf, there is a cycle of
the form(ly - - -Ink- - - 1,,).

In the last column of the matriB — D there are two non-zero elements, nanigly
and—djn.

Sincebny = £1 we can create a zero in the last column of itherow by adding to
thelth row byy, - din times the last row. In the computation below, this operation is used
in the step indicated witl).

In this calculation, we again usg and D’ to denote the matrices obtained by deleting
the last row and column a8 and D, respectively. Note that thigh row of D’ and thekth
column of D’ only consists of zeros and that in each other row and each other column of
D’ there is exactly one non-zero element.

Also, we needD” obtained fromD’ by changing théth component of théth row of
D’ to bnndindnk. SinceD’ is from the above form, we then have that in each row and each
column of D” there is exactly one non-zero element. So

0
0
Y% _
detB— D) = det B-D 6"”
0
0 O _dnk O 0 bnn
0
et yo f
0
0 - 0 —dwx O --- 0 bm
== bnndet(B/—D”). (2)

Now we can associate a permutatjohof n — 1 elements t@”. The cycle decomposition
of u” is obtained from the cycle decompositionofby replacing in this decomposition
the cycle(ly - - - Ink- - -1,,) which contains:, with the cycle(/; - - - Ik - - - 1,). The induction
hypothesis now applies to the mat#— D” and it follows that all factors in the expansion
of det(B’ — D") except the one containing the terms of itrerow are of the desired form.
The exceptional factor containing the elements oftheow and corresponding to the cycle
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(I1---lk---1p) is of the following form:

bty =+ bi -+ bi1, — diguay) -+ (bandindni) -+ - di, ) -

We can multiply the factor above with, to get

banbigiy -+ bu -+ - bii, — bandiypy) -+ (andindni) -+ - i)
which equalsi = u (/) andu(n) = k)

biyy - buban- - bi,i, = dipay - dipdnpn - dipuay)-

This part of the expansion ¢2) together with the other factors show that@gt D) is of
the desired form. O

Note that the number of factors of the determinants in the previous lemma does not depend
on B, but only onD (in fact, only on the form o determined by:). So for a givenD, with
D asinthe second caselefmma 3.2and any diagonal matri& consisting of 1'sand-1's,
we obtain that déf,, — BD) = det(B)(£1 — x1) - - - (1 — xz). Herexq, ... ,xx € 1+ 27Z
and thet+1's depend on the choice &f In this perspective the following lemma is crucial.

Lemma 3.6. Fix anintegerk > 1andx1, ... ,x; € 1+ 2Z. Then
either(ey — x1) - - - (e — x;) > 0 forallpossiblees, ... , ¢ € {—1, 1},
or(eg —x1)---(ex —xx) <0 forall possiblesy, ... , e € {—1, 1}.
Proof. Suppose there exists, ... , e, ande}, ... , € suchthate; —x1) - - - (ex —xx) > 0

and(e] —x1) - - - (¢, —xx) < 0. Thisis only possible if there existjgor which 1— x; > 0
and—1—x; < 0 or conversely = x; < 0 and—1 — x; > 0. But in the former case
we quickly see thak; = 0 which is not possible and in the latter case we obtain the
contradiction thak; > 1 andx; < —1. O

We are now ready to prove the Anosov theorem for flat orientable GHW manifolds.

Theorem 3.7. Letn > 3 be an odd integer and M is an orientable n-dimensional flat
generalized Hantzsche—Wendt manifold. Then for each continuoug'mag — M we
have thatN(f) = [L())|.

Proof. Supposef : M — M is a continuous map oM. Due toCorollary 2.2we know that

f is homotopic to a mapg induced by an suitable affine endomorphi&imD) of R" and

due toProposition 3.3ve know howD looks like. Since the Nielsen numbers are homotopy
invariants it suffices to prove the theorem for the ngaj/e useTheorem 2.3o0 verify that

N(g) = |L(g)|. Therefore we have to calculate dgt— T(x) D) for eachx € F. Note that

for eachx € F, T(x) is a diagonal matrix whose diagonal entries consist of an even numbers
of —1's while the others are 1 and so @&tr)) = 1. Therefore we can applemmas 3.5

and 3.6to the determinants d@f, — T(x) D) which finishes the proof of the theorem.O)
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4. Non-orientable flat GHW manifolds

We show for any non-orientable flat GHW manifalfithat Theorem 3.®oes not hold.
Again due toTheorem 2.6ve have that the manifolgf/ is a diagonal manifold. So we can
assume thak = w1(M) is generated by

(Zl’ In)a AR (va I}’l)7 (al5 Al)v L ) (an—l’ An—l)

with z; € Z", A; a diagonal matrix whose diagonal entries consist of 1's-aht$ and the

a; are appropriate translational parts with 0 arid’ in their componentd 4, Lemma 1.4]

We can no longer be specific about thes, since in the non-orientable case there are more
possibilities. However a#f is a non-orientable manifold, there exists a ma#rixsuch that
det(A;) = —1. We can prove the following theorem concerning non-orientable flat GHW
manifolds.

Theorem 4.1. If M is a non-orientable flat GHW manifold. Then there always exists a
continuous mag’ : M — M for whichN(f) # |L(/)].

Proof. Consider for example the affine transformation with translational part zero and

3 0 0

0 3 0
linear partD =

0 0 - 3

To show that(0, D) induces a continuous map : M — M, it suffices to verify that
conjugation with(0, D) mapsE to E. Assume(b, B) € E (we know thatb € (1/2)Z"). If
we conjugate witi{0, D) we obtain the following:

(0, D)(b, B)(0, D)~ = (Db, DB)(0, D) = (Db, DBD™}).

BecauseD and B are diagonal matriceBD~! = B and sinceDb = 3b we obtain that
(b, B) is mapped ontdq3b, B) = (2b, I,)(b, B) € E. Sinceb € (1/2)Z", we have that
(3b, B) € E or conjugation with(0, D) mapsE to E.

To show thatV( f) # |L(f)|, we again us&heorem 2.3lt is sufficient to findx, x’ € F
suchthatdetl, — T(x) D) > 0and detl, — T(x') D) < 0. We establish this using dé{ — D)
and det/, — A; D) (with A;, such thatdet; = —1). One easily verifies that déf, — D) =
(1-3)---(1-3)and detl, — A;D) = det(A;) detA; — D) = (=1)(a11—3) - - - (@nn—3)
with gij € {—1,1} for 1 < i < n. So if we applyLemma 3.6 we obtain that the two
determinants have a different sign and therefgcg) = |L(f)]. O
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